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Colonization of the land by plants some 400 million
years ago was associated with the colonization of
their primitive roots by soil-borne filamentous fungi
(Nicolson, 1975; Simon et al., 1993; Taylor et al.,
1995). Today, 90% to 95% of land plants still maintain
some type of mycorrhizal association so that “mycor-
rhizas, not roots, are the chief organs of nutrient
uptake by land plants” (Smith and Read, 1997). Of
the several mycorrhizal symbioses, arbuscular my-
corrhizas are much the most abundant. These are
formed by a very wide variety of host plants (includ-
ing angiosperms, gymnosperms, pteridophytes, and
some mosses, lycopods, and psilotales) and a com-
paratively small group of aseptate filamentous fungi,
the Glomales.

The study of arbuscular mycorrhizal (AM) fungi
has fundamental and practical importance. First be-
cause in most environments “root biology” is actu-
ally “mycorrhizal biology”, and second because of
the practical importance of AM in fields as diverse
as sustainable agriculture, horticulture, reforesta-
tion, and ecosystem management (Bethlenfalvay and
Schüepp, 1994; Barea and Jeffries, 1995). There have
been a number of reviews and at least one excellent
text (Smith and Read, 1997) in recent years cover-
ing various aspects of the AM symbiosis. These in-
clude: development and morphology (Smith and
Smith, 1997; Barker et al., 1998; Azcón-Aguilar et al.,
1999; Bago, 2000), molecular and cellular biology
(Gianinazzi-Pearson et al., 1995; Harrison, 1999), and
physiology and nutrient transfer at symbiotic inter-
faces (Cooper, 1984; Smith and Smith, 1990; Koide
and Schreiner, 1992; Azcón-Aguilar and Bago, 1994;
George et al., 1995; Jakobsen, 1999). A current re-
source on mycorrhizal research worldwide is main-
tained at www.mycorrhiza.ag.utk.edu. Here we re-
view the biochemistry of carbon metabolism and
transport in the AM symbiosis. Progress in this area
has been significant thanks to the use in recent years
of diverse methods including molecular biology,

cytology, in vitro AM cultures, microscopy, and nu-
clear magnetic resonance (Bago et al., 2000).

THE SIGNIFICANCE OF CARBON FLUXES AND
METABOLISM IN ARBUSCULAR MYCORRHIZAS

AM fungi derive most, if not all, of their carbon
from the host plant (Jennings, 1995). Interest in car-
bon handling has been spurred because this is a
fundamental aspect of the symbiosis, because of the
large amounts of carbon handled by the symbiosis,
and because of the importance of carbon nutrition in
attempts to grow the AM fungus axenically (without
host plants). The AM symbiosis usually increases
plant biomass and photosynthesis and directs the
flow of a significant fraction of the host plant’s pho-
toassimilate. Estimates vary, but plants have been
shown to direct 4% to 20% more photoassimilate to
mycorrhizal root systems (Douds et al., 2000; Gra-
ham, 2000). The AM symbiosis therefore determines
the flow of huge quantities of carbon worldwide—an
estimate of 5 billion tons of carbon annually may be
reasonable. The cost-benefit analysis (for review,
see Douds et al., 2000) and underlying mechanisms
are thus of no small ecological and agricultural
importance.

The difficulties of studying an obligate symbiont
and the practical goal of mass-producing AM fungal
innoculum have motivated considerable efforts over
several decades to culture AM fungi axenically.
Much of the attention in this (hitherto unsuccessful)
endeavor has centered on the search for more or less
exotic forms or combinations of carbon substrates
(Azcón-Aguilar et al., 1999). Although some of these
carbon sources succeeded in somewhat prolonging
growth of germinating spores or hyphae, (Hepper,
1984; Bécard and Piché, 1989; Azcón-Aguilar et al.,
1999) none induced the fungus to complete its life
cycle. Other studies have sought evidence for lesions
in carbon metabolic capability that might explain the
recalcitrance to axenic culture (Hepper, 1984).

DEVELOPMENT AND STRUCTURES

The life cycle of AM fungi begins when fungal
propagules (resting spores, Fig. 1A, or separated in-
traradical or extraradical hyphae) start to grow. Dur-
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ing its limited independent growth (for review, see
Azcón-Aguilar et al., 1999) triacylglycerides (TAG)
and glycogen, the main carbon storage compounds of
the fungus, are mobilized (Beilby and Kidby, 1980;
Jabaji-Hare, 1988; Bécard et al., 1991; Bonfante et al.,
1994; Gaspar et al., 1994, 1997b). This mobilization
fuels the development of coenocytic germ tubes and
provides carbon skeletons for anabolism, including
the de novo synthesis of the chitinous cell wall that
surrounds all the fungal structures pictured in Figure
1 (Bonfante-Fasolo and Grippiolo, 1984; Bonfante-
Fasolo et al.; 1990; Bago et al., 1996). Asymbiotic
growth is maintained for 1 or 2 weeks, during which

germ-tube development may reach several centime-
ters. However if symbiosis is not successfully estab-
lished within this limited period, AM fungi arrest
their growth. Arrest of growth is accompanied by
germ-tube septation and nuclear autolysis (Bago et
al., 1998c), after which fungal propagules re-enter a
state of dormancy and have the ability to regerminate
several times (Koske, 1981; Hepper, 1984). Growth
arrest before complete depletion of carbon stores
may be a strategy to increase the chances of finding
an appropriate root to colonize.

If and when the asymbiotically growing AM fun-
gus does contact a host root (Fig. 1B), a series of

Figure 1. Morphological characteristics relevant to AM fungal metabolism. A, Soil-borne spores have a limited “saprophy-
tic” growth, being unable to complete their life cycle unless they find a host root to colonize. B, After successful
colonization, the AM fungus differentiates intraradically forming different structures, the most representative being arbus-
cules (C). At the same time the fungus profusely develops an extraradical mycelium with different characteristics structures:
BAS (D), BAS-spores (E), and resting spores (E and F), thus closing its life cycle.
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signaling events occurs between the partners, which
leads to the “acceptance” by the host root of the AM
fungus as a symbiont (Giovannetti et al., 1994; Smith
and Read, 1997; Blee and Anderson, 2000; Lambais
2000; Shaul et al., 2000). The fungus then develops
extensively between and within root exodermal and
cortical cells, and forms intraradical structures (for
review, see Bonfante-Fasolo, 1984), including arbus-
cules (Fig. 1C) and lipid-rich vesicles.

Arbuscules consist of hyphae that branch dichoto-
mously and profusely within root cortical cells. Ar-
buscules and other fungal structures do not penetrate
host cell membranes, but invaginate them (Bonfante-
Fasolo, 1984). For the arbuscules this results in a huge
increase in plant-to-fungal contact surface area,
which leads to the assumption that the bidirectional
transfer of nutrients in AM probably occurs at the
periarbuscular interfaces (Gerdemann, 1968; Harley
and Smith, 1983; Bonfante-Fasolo, 1984). This para-
digm has been supported by indirect data for the
supply of phosphorus to the host by the fungus
(Smith and Read, 1997). However, whether arbus-
cules are the site of root-to-fungus carbon transfer is
a matter of debate (Gianinazzi-Pearson et al., 1991;
Smith and Read, 1997; Smith and Smith, 1997; Bago,
2000).

Root colonization is accompanied by the develop-
ment of an extraradical mycelium that includes char-
acteristic branched structures (BAS; Fig. 1D; Mosse
and Hepper, 1975; Bago et al., 1998a, 1998b). These
may be involved with the uptake of mineral nutrients
by extraradical hyphae (Bago et al., 1998b). The ex-
ternal spores develop on some of these BAS (Fig. 1E;
Bago et al., 1998b) completing the fungal life cycle.
During the AM fungal sporulation phase large num-

bers of these propagules are formed (Fig. 1F)—as
many as 14,000 to 38,000 per root have been esti-
mated in monoxenic cultures (C. Azcón-Aguilar, per-
sonal communication; St-Arnaud et al., 1996). Be-
cause 45% to 95% of the AM spore carbon pool is
neutral lipid (TAG; Beilby, 1983; Jabaji-Hare, 1988;
Bécard et al., 1991), these constitute a major sink for
the carbon provided by the host plant.

CARBON FLOWS IN THE AM SYMBIOSIS

Figure 2 shows a working model for primary flows
of carbon in the AM symbiosis. Emphasis is on up-
take, storage, and translocation and on metabolic
fluxes for which there is experimental evidence. In
the following sections, studies that directly underpin
the different features of the model are discussed and
remaining questions are reviewed.

Uptake of Carbon by the Fungus

Following the demonstration of significant carbon
flow from plant to fungus (Ho and Trappe, 1973;
Bevege et al., 1975) arguments from analogy with
saprophytic and other symbiotic fungi (Lewis and
Harley, 1965a, 1965b; Smith et al., 1969) made sugars
strong candidates for the form(s) of carbon trans-
ferred. Woolhouse (1975) proposed that host root
cortical cells may release sugars to the symbiotic
plant-to-fungal interfaces by passive efflux that
might be stimulated by the presence of the fungus.
Evidence for altered host plasma membrane perme-
ability has been mixed (for review, see Harrison,
1999), and no plant transporters involved in such
carbon efflux (Sauer et al., 1994) have yet been iden-

Figure 2. Biochemical pathways of carbon me-
tabolism active in symbiotic intraradical and
extraradical AM fungi. Dashed arrows indicate
transport events between the different carbon
pools. Dotted arrows indicate pathways sug-
gested, but not confirmed to take place. 1, Mi-
tochondria; 2, glyoxysome; 3, lipid bodies.
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tified (Harrison, 1999). Studies using isotopic label-
ing with nuclear magnetic resonance spectroscopy in
AM roots (Shachar-Hill et al., 1995) and radiorespi-
rometry measurements on isolated intraradical hy-
phae (Solaiman and Saito, 1997) have shown that the
fungal symbiont can take up and use hexose within
the root. In contrast, within the root there is no
significant uptake by the extraradical mycelium of
Glc, Fru, mannitol, or succinate (Pfeffer et al., 1999).

The finding of modest utilization of Suc by in-
traradical hyphae (Solaiman and Saito, 1997) raises
the possibility that this might also be taken up,
though indirect arguments based on fractional en-
richments make this less probable in vivo (Shachar-
Hill et al., 1995). The presence of elevated levels of
host extracellular (acid) invertase activity in diverse
biotrophic associations, including AM (Dehne, 1986;
Farrar and Lewis, 1987; Snellgrove et al., 1987) is also
consistent with hexose as the dominant form taken
up. Nonetheless further direct evidence is desirable
to conclusively demonstrate whether host Suc is hy-
drolyzed before uptake. Convincing data from exper-
iments on uptake of, and competition between sugars
in a powdery mildew/wheat association has recently
allowed Sutton et al. (1999) to show that Suc in that
system is indeed hydrolyzed before uptake. Suc uti-
lization of the ectomycorrhizal fungi Amanita musca-
ria and Hebeloma crustuliniforme also depends on the
cell wall invertase activity of their host spruce (Salzer
and Hager, 1991). Similar experiments on an arbus-
cular mycorrhiza would be valuable.

Molecular characterization of sugar transporters in
fungus and host would contribute to the understand-
ing of transferred forms, illuminate the mechanism
involved, and open the door to studying regulation
of uptake. Fungi can have active and passive sugar
transport systems (Blumenthal, 1976; Lagunas, 1993)
and there is no direct evidence as to which of these
operate in AM fungi. Fungal carbon uptake at the
interface might be passive with a concentration gra-
dient maintained by rapid conversion of carbon
taken up, as proposed by Bevedge (1975) and consis-
tent with the observed conversion of hexose to tre-
halose and glycogen (Shachar-Hill et al., 1995). An
alternate manner, or together with such a porter, may
be active transport. H1-hexose cotransport by fungi
is well known (Sanders, 1988) and such a transporter
has been reported in an ectomycorrhizal species
(Wiese et al., 2000).

Metabolism in the Mycorrhizal Root

Root carbohydrate pools are substantially altered
in AM compared with uncolonized plants (for re-
view, see Douds et al., 2000). For example, starch
levels are lower or even absent in arbuscule-
containing cortical cells, and labeling in Suc was
about four times less when 13C-Glc was provided to
colonized roots compared with non-colonized roots

(Shachar-Hill et al., 1995). At the level of gene expres-
sion, Harrison (1996) demonstrated increased expres-
sion of a hexose transporter that is probably involved
in uptake in cortical cells near intraradical hyphae
(Harrison, 1999). Blee and Anderson (2000) report
changes in the expression of invertase in cells con-
taining arbuscules. Respiration in mycorrhizal roots
is substantially higher than in non-mycorrhizal ones
(Shachar-Hill et al., 1995; Douds et al., 2000; Graham,
2000). These observations are consistent with the
transfer of carbohydrate to the fungus and with my-
corrhizal roots as a stronger sink for photosynthate
than non-mycorrhizal ones (for review, see Douds et
al., 2000).

Trehalose and glycogen were found to be the first
substantial fungal carbon pool labeled from hexose
taken up by the intraradical mycelium (Shachar-Hill
et al., 1995). In contrast to observations in the ecto-
mycorrhizal symbiosis (Martin et al., 1985, 1998), the
acquired Glc is directly incorporated by the AM fun-
gus into trehalose and glycogen without detectable
label scrambling via mannitol or other metabolic
turnover. Glycogen and trehalose are both turned
over in the intraradical (Shachar-Hill et al., 1995) and
in extraradical mycelium and germinating spores
(Bago et al., 1999; Pfeffer et al., 1999), which may be
associated with buffering cytoplasmic hexose levels.
Cytoplasmic hexose is also metabolized via the pen-
tose phosphate pathway (Pfeffer et al., 1999), a find-
ing consistent with the known presence of Glc phos-
phate dehydrogenase (Saito, 1995). Several glycolytic
and tricarboxylic acid cycle enzyme activities have
been demonstrated in intraradical hyphae (Mac-
Donald and Lewis, 1978; Saito, 1995). A phospho-
glycerate kinase gene of Glomus mosse expressed in
tomato root systems has recently been characterized
(Harrier et al., 1998).

The synthesis of storage lipids is also a substantial
sink for carbon in the intraradical hyphae. Lösel and
Cooper (1979) showed that the lipid component of
mycorrhizal onion roots became labeled when plants
photosynthesized in the presence of 14CO2, or were
supplied with labeled Suc, acetate, or glycerol. TAGs
are the most abundant form of lipid in AM fungi
(Cooper and Lösel, 1978; Beilby and Kidby, 1980;
Nagy et al., 1980; Beilby, 1983; Jabaji-Hare, 1988;
Gaspar et al., 1994, 1997a, 1997b). Cis 11,12 hexade-
cenoic acid is the predominant fungal fatty acid (FA)
in all of the Glomus species (Graham et al., 1995).
Labeling of fungal triacylglycerol from 13C-labeled
substrates supplied to the mycorrhizal root suggests
that a substantial fraction of hexose taken up is used
for lipid synthesis (Pfeffer et al., 1999). The 13C-
labeling pattern of the glycerol and FA moieties of
the triacylglyceride molecule is consistent with the
host-derived hexoses being metabolized (via glycol-
ysis) to triose and acetyl coenzyme A (CoA). After
this, FA would be synthesized (via acetyl CoA car-
boxylase and the FA synthase complex), elongated
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and/or desaturated, and finally assembled with a
glyceryl moiety via acyltransferases of uncertain sub-
cellular localization (Murphy, 1991).

In oleogenic fungi, the acetyl CoA used for triacyl-
glyceride synthesis is derived from citrate, which, in
a biochemical mechanism unique to these type of
fungi, is transported from the mitochondrion to the
cytosol, then cleaved by a cytosolic citrate lyase (EC
4.1.3.8) to acetyl CoA and oxalacetate (Murphy,
1991). Such a cytoplasmic citrate lyase may also exist
in AM fungi.

Translocation by the Fungus

Since hexose is taken up by the fungus within the
root and converted to trehalose and glycogen (see
above), carbohydrates are obvious candidates to be
the form(s) of carbon translocated to the external
mycelium (for example, see Gaspar et al., 1997a).
TAG in the extraradical structures would then be
synthesized from carbohydrate in the extraradical
mycelium. However, Pfeffer et al. (1999) concluded
from their analysis of 2H labeling of lipids after sup-
plying D2O to either mycorrhizal roots or to the
external mycelium that the FA moieties in the storage
TAG of extraradical hyphae had been previously
synthesized by the intraradical mycelium and ex-
ported. A substantial flux of lipid bodies would
therefore be expected along the AM fungal hyphae
and there is some support for this; Olsson et al. (1995)
observed that the concentration of storage lipids in
the extraradical mycelium of an AM fungus de-
creased relative to phospholipid concentration 1
week after disconnecting the hyphae from the host
root, indicating that the neutral lipids were metabo-
lized by the external hyphae, but not replaced. In
vivo microscopy indicates that there is indeed a sub-
stantial flow of lipid bodies along fungal hyphae (B.
Bago, unpublished data). This does not exclude the
export of both carbohydrate and lipid, and our recent
results on labeling patterns in glycogen after uptake
of 13C Glc in the mycorrhizal root suggest that gly-
cogen is also exported to the extraradical mycelium
(B. Bago, unpublished data). We are as yet com-
pletely ignorant about the regulation of carbon ex-
port and indeed about the mechanism of lipid
translocation.

Metabolism in the Extraradical Mycelium

Glycolytic enzyme activities assayed in extraradi-
cal mycelium have been found to be low or absent
(MacDonald and Lewis, 1978; Saito, 1995). Labeling
patterns in carbohydrates in the extraradical myce-
lium when acetate was provided is consistent with a
substantial gluconeogenic flux fueled by the glyoxy-
late cycle (Pfeffer et al., 1999). These two observations
are consistent, since the simultaneous operation of
glycolysis and gluconeogenesis would represent a

futile cycle. The finding that isocitrate lyase and
malate synthase are expressed in the extraradical
mycelium (J. Jun, unpublished data) provides further
evidence that the glyoxylate cycle is active. Since
lipid is translocated to the extraradical mycelium, the
model of Figure 2 shows the use of this for anabolism
in the extraradical mycelium. Lipid is also likely to be
the main respiratory substrate since the tricarboxylic
acid cycle is active in the external mycelium (Mac-
Donald and Lewis, 1978; Pfeffer et al., 1999; Bago et
al., 1999). Since glycolytic activity seems to be low,
carbohydrates are probably not a major source of
acetyl CoA. Pentose phosphate pathway activity also
appears to be substantial in the extraradical myce-
lium, with enzyme activity measurements (Saito,
1995) and isotopic labeling data (Pfeffer et al., 1999),
suggesting higher flux through this pathway than in
the intraradical phase.

Implications for Gene Expression

The literature demonstrates and Figure 2 embodies
the idea that carbon flows in the AM are organized
and highly polarized. Although there is evidence for
some heterogeneity among the several thousand nu-
clei in a spore (Sanders et al., 1995), the genetic pool
of the fungus is presumably very largely the same
throughout the coenocytic fungus. Therefore the dis-
tinct metabolic and transport fluxes in intraradical
and extraradical mycelia require that metabolic gene
expression must be regulated spatially and tempo-
rally to form a “metabolic bipole.” Such differential
gene expression has been demonstrated for phos-
phate transporters (Harrison and van Buuren, 1995),
but little is known about genes involved in carbon
flows. The signals for this differentiation remain un-
identified. It is also unknown if such a fungal differ-
entiation is a programmed sequence triggered by one
or several signals or whether it requires a continuous
input by the plant to be maintained.

Is There a Transfer of Carbon from Fungus to
Root in the AM Symbiosis?

Simard et al. (1997) recently reported that there was
a net transfer of carbon between plants linked by
ectomycorrhizal hyphal networks (see also Finlay
and Read, 1986). This result suggests that the direc-
tion of carbon transport in mycorrhizas might be
reversible. 13C abundance analysis indicates that 0%
to 10% (sometimes more) of the carbon of an AM root
can be derived from another plant linked to the
former by AM fungal hyphae (Watkins et al., 1996;
Graves et al., 1997). However, Fitter et al. (1998)
found that carbon transported between AM-linked
plants remains in the roots of the “recipient” mycor-
rhizal plant—even when the shoots are removed and
allowed to regrow so that carbon flows from roots to
the shoots of that plant. This suggests that carbon
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apparently transferred between connected root sys-
tems remains in the fungus (Fitter et al., 1998; Rob-
inson and Fitter, 1999). In accordance with this, these
authors propose that the fungus acquires carbon
from the root(s) in which it has arbuscules and hy-
phae, and translocates carbon along extraradical hy-
phae according to fungal needs, storing the acquired
carbon in extraradical spores and older infection
units where vesicles are developing. Fitter et al.
(1998) found a positive correlation between the
amount of carbon transferred and the density of AM
fungal vesicles in the roots of the recipient plant,
which fits with the export of lipid by the fungus (Fig.
2). Furthermore, supplying labeled permeant sub-
strates (acetate, glycerol, and CO2) to the extraradical
hyphae results in labeling of fungal, but not host
carbohydrate (Pfeffer et al., 1999; B. Bago, unpub-
lished data). In accordance with this, we view the
model as supporting the conclusion (Robinson and
Fitter, 1999) that carbon translocated by the fungus
between plant root systems probably does not con-
tribute significantly to host carbon nutrition. How-
ever, the transfer of nitrogen from fungus to host can
be significant (Frey and Schüepp, 1992; Johansen et
al., 1993) and depending on the form transferred, this
is likely to entail a significant carbon flux (for exam-
ple as amino acids) under some conditions.

CARBON FLOWS IN THE ASYMBIOTIC FUNGUS

A model for the metabolism of the asymbiotic AM
fungus is shown in Figure 3. This stage of fungal
development exhibits characteristics of intraradical
and extraradical symbiotic hyphae. As is the case in
the extraradical mycelium, germinating spores have
substantial gluconeogenic flux mobilizing lipid
(TAG) stores to sustain growth (Bago et al., 1999).
Enzymatic assays indicate activity of glycolysis (Mac-
Donald and Lewis, 1978; Saito, 1995), the tricarboxy-

lic acid cycle (Hepper et al., 1988; Saito, 1995), and the
pentose phosphate pathway (Saito, 1995). Labeling
experiments confirm significant carbon fluxes through
these pathways and through the glyoxylate cycle, non-
photosynthetic one-carbon metabolism, and the syn-
thesis of Glu and Arg (Bago et al., 1999). Germinating
spores also take up hexose, though to a lesser extent
than intraradical hyphae. Despite evidence for label-
ing of lipids from 14C acetate (Beilby, 1983), our
13C labeling experiments indicate that the synthesis
of storage FAs in the asymbiotic phase is not a signif-
icant flux (Bago et al., 1999). Because TAG is the major
carbon storage compound in AM fungal spores, it is
tempting to speculate that it is the absence of FA
synthesis that prevents the asymbiotic fungus from
forming new propagules, making it an obligate
symbiont.

FUTURE DIRECTIONS

Figures 2 and 3 illustrate what we know about the
main fluxes of carbon; by omission, they also embody
our ignorance. Among the topics requiring attention
are: (a) completing the identification of metabolic
pathways active in the different phases of the fungus,
(b) molecular characterization and in situ localization
of plant and fungal carbon transporters, and (c) iden-
tification of the enzymes governing flux through the
different metabolic pathways, and molecular charac-
terization of the fungal genes encoding them. Knowl-
edge in these areas will provide the context and tools
for tackling the most important questions about car-
bon flows in the AM symbiosis—these concern the
spatial and temporal regulation of carbon flows by
development, signaling, and environment.

Received March 22, 2000; accepted June 21, 2000.

Figure 3. Carbon metabolism in asymbiotic
germ-tubes. Dashed arrows indicate transport
events between the different carbon pools. Dot-
ted arrows indicate pathways suggested, but not
confirmed, to take place. 1, Mitochondria; 2,
glyoxysome; 3, lipid bodies.
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and developmental dynamics of the external mycelium
of the arbuscular mycorrhizal fungus Glomus intraradices
grown under monoxenic conditions. Mycologia 90: 52–62

Bago B, Chamberland H, Goulet A, Vierheilig H, Lafon-
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Basel, pp 117–131

Bevege DI, Bowen GD, Skinner ME (1975) Comparative
carbohydrate physiology of ecto- and endomycorrhizas.
In FE Sanders, B Mosse, PB Tinker, eds, Endomycorrhi-
zas. Academic Press, London, pp 149–174

Blee KA, Anderson AJ (2000) Defense responses in plants
to arbuscular mycorrhizal fungi. In GK Podila, DD
Douds Jr, eds, Current Advances in Mycorrhizae Re-
search. APS Press, St. Paul, pp 27–44

Blumenthal JH (1976) Reserve carbohydrates in fungi. In
JE Smith, DR Berry, eds, The Filamentous Fungi, Vol 2:
Biosynthesis and Metabolism. Edward Arnold, London,
pp 292–315

Bonfante P, Balestrini R, Mendgen K (1994) Storage and
secretion processes in the spore of Gigaspora margarita
Becker and Hall as revealed by high-pressure freezing
and freeze substitution. New Phytol 128: 93–101

Bonfante-Fasolo P (1984) Anatomy and morphology of VA
mycorrhizae. In CL Powell, DJ Bagyaraj, eds, VA Mycor-
rhiza. CRC Press, Boca Raton, FL, pp 5–33

Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990)
Correlation between chitin distribution and cell wall
morphology in the mycorrhizal fungus Glomus versi-
forme. Mycol Res 94: 157–165

Bonfante-Fasolo P, Grippiolo R (1984) Cytochemical and
biochemical observations on cell wall of the spore of
Glomus epigaeum. Protoplasma 123: 140–151

Cooper KM (1984) Physiology of VA mycorrhizal associa-
tions. In CL Powell, DJ Bagyaraj, eds, VA Mycorrhiza.
CRC Press, Boca Raton, FL, pp 155–186
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